A laptop computer or naturally laptop (also notebook computer or notebook) is a small mobile personal computer, ordinarily weighing from one to three kilograms, depending on size, materials and other factors.
While the terms "laptop" and "notebook" are often used interchangeably, "laptop" is the older term, introduced in 1983 with the Gavilan Sc. "Notebook computer" is a later coinage, which was used to differentiate smaller devices such as those of the Compaq Lte series in 1989, which were, in contrast to former laptops, the approximate size of an A4 paper sheet.[1] whether term is often used improperly: due to heat and other issues, many laptops are inappropriate for use on one's lap, and most are not the size of an A4 sheet. Although, some older conveyable computers, such as the Macintosh conveyable and certain Zenith TurbosPort models, were sometimes described as "laptops", their size and weight were too great for this category.
Parallel To USB Cable
Laptops ordinarily run on a single battery or from an external Ac/Dc adapter which can charge the battery while also supplying power to the computer itself.
An Acer laptop with touchpadAs personal computers, laptops are capable of the same tasks as a desktop Pc, although they are typically less distinguished for the same price. They consist of components that are similar to their desktop counterparts and perform the same functions, but are miniaturized and optimized for mobile use and effective power consumption. Laptops ordinarily have liquid crystal displays and most of them use different memory modules for their Ram (for instance, So-Dimm in lieu of the larger Dimms). In addition to a built-in keyboard, they may apply a touchpad (also known as a trackpad) or a pointing stick for input, though an external keyboard or mouse can ordinarily be attached.
Categories
Terms sometimes used for subtypes of laptop computers include:
Ultraportables
Laptops with screens typically less than 12 inches diagonally and a weight of less than 1.7kg. Their traditional audience is ordinarily firm travellers, who need small, light laptops. Ultraportables are often very expensive and house power-saving Cpus and approximately all the time have integrated graphics.
Thin-and-lights
Laptops ordinarily weighing in between 1.8kg and 2.8kg with a screen size of between 12 and 14 inches diagonally.
Medium-sized laptops
These ordinarily have screens of 15 - 15.4 inches diagonally and a weight of around 3-3.5kg. They ordinarily reduce a puny computing power for smaller dimensions and longer battery life, although the distance and width are ordinarily carefully by the screen size.
Desktop replacement computers
Powerful laptops meant to be mainly used in a fixed location and infrequently carried out due to their weight and size; the latter provides more space for distinguished components and a big screen, ordinarily measuring 15 inches or more. Desktop replacements tend to have puny battery life, rarely exceeding three hours, because the hardware does not optimize power efficiency.
History
Before laptop/notebook computers were technically feasible, similar ideas had been proposed, most notably Alan Kay's Dynabook concept, advanced at Xerox Parc in the early 1970s.
The first commercially ready conveyable computer was the Osborne 1 in 1981, which used the Cp/M operating system. Although it was large and heavy compared to today's laptops, with a tiny Crt monitor, it had a near-revolutionary impact on business, as professionals were able to take their computer and data with them for the first time. This and other "luggables" were inspired by what was probably the first conveyable computer, the Xerox NoteTaker, again advanced at Xerox Parc, in 1976; however, only ten prototypes were built. The Osborne was about the size of a conveyable sewing machine, and importantly could be carried on a industrial aircraft. However, it was not inherent to run the Osborne on batteries; it had to be plugged in.
A more enduring success was the Compaq Portable, the first stock from Compaq, introduced in 1983, by which time the Ibm Personal Computer had come to be the accepted platform. Although scarcely more conveyable than the Osborne machines, and also requiring Ac power to run, it ran Ms-Dos and was the first true Ibm clone (Ibm's own later conveyable Computer, which arrived in 1984, was notably less Ibm Pc-compatible than the Compaq[citation needed]).
Another primary engine announced in 1981, although first sold widely in 1983, was the Epson Hx-20. A easy handheld computer, it featured a full-transit 68-key keyboard, rechargable nickel-cadmium batteries, a small (120 x 32-pixel) dot-matrix Lcd display with 4 lines of text, 20 characters per line text mode, a 24 column dot matrix printer, a Microsoft Basic interpreter, and 16 kB of Ram (expandable to 32 kB).
However, arguably the first true laptop was the GriD Compass 1101, designed by Bill Moggridge in 1979-1980, and released in 1982. Enclosed in a magnesium case, it introduced the now well-known clamshell design, in which the flat display folded shut against the keyboard. The computer could be run from batteries, and was adequate with a 320×200-pixel plasma display and 384 kilobyte bubble memory. It was not Ibm-compatible, and its high price (Us$ 10,000) puny it to specialized applications. However, it was used heavily by the U.S. Military, and by Nasa on the Space Shuttle during the 1980s. The GriD's manufacturer subsequently earned primary returns on its patent possession as its innovations became commonplace. GriD Systems Corp. Was later bought by Tandy (RadioShack).
Two other distinguished early laptops were the Sharp Pc-5000 and the Gavilan Sc, announced in 1983 but first sold in 1984. The Gavilan was notably the first computer to be marketed as a "laptop". It was also adequate with a pioneering touchpad-like pointing device, installed on a panel above the keyboard. Like the GriD Compass, the Gavilan and the Sharp were housed in clamshell cases, but they were partly Ibm-compatible, although primarily running their own law software. Both had Lcd displays, and could associate to elective external printers.
The year 1983 also saw the commence of what was probably the biggest-selling early laptop, the Kyocera Kyotronic 85, which owed much to the organize of the former Epson Hx-20. Although it was at first a slow jobber in Japan, it was quickly licensed by Tandy Corporation, Olivetti, and Nec, which saw its inherent and marketed it respectively as Trs-80 Model 100 line (or Tandy 100), Olivetti M-10, Nec Pc-8201.[2] The machines ran on accepted Aa batteries. The Tandy's built-in programs, along with a Basic interpreter, a text editor, and a concluding program, were supplied by Microsoft, and are opinion to have been written in part by Bill Gates himself. The computer was not a clamshell, but provided a tiltable 8×40-character Lcd screen above a full-travel keyboard. With its internal modem, it was a very conveyable communications terminal. Due to its portability, good battery life (and ease of replacement), reliability (it had no inviting parts), and low price (as puny as Us$ 300), the model was very regarded, becoming a favorite among journalists. It weighed less than 2 kg with dimensions of 30 × 21.5 × 4.5 cm (12 × 8.5 × 1.75 inches). Preliminary specifications included 8 kilobyte of Ram (expandable to 24 kB) and a 3 Mhz processor. The engine was in fact about the size of a paper notebook, but the term had yet to come into use and it was commonly described as a "portable" computer.
Among the first industrial Ibm-compatible laptops were the Ibm Pc Convertible, introduced in 1986, and two Toshiba models, the T1000 and T1200, introduced in 1987. Although puny floppy-based Dos machines, with the operating law stored in read-only memory, the Toshiba models were small and light adequate to be carried in a backpack, and could be run off lead-acid batteries. These also introduced the now-standard "resume" feature to Dos-based machines: the computer could be paused between sessions, without having to be restarted each time.
The first laptops victorious on a large scale came in large part due to a ask For Proposal (Rfp) by the U.S. Air Force in 1987. This covenant would ultimately lead to the purchase of over 200,000 laptops. Competition to provide this covenant was fiercely contested and the major Pc clubs of the time; Ibm, Toshiba, Compaq, Nec, and Zenith Data Systems (Zds), rushed to organize laptops in an exertion to win this deal. Zds, which had earlier won a landmark deal with the Irs for its Z-171, was awarded this covenant for its SupersPort series. The SupersPort series was originally launched with an Intel 8086 processor, dual floppy disk drives, a backlit, blue and white Stn Lcd screen, and a NiCd battery pack. Later models featured an Intel 80286 processor and a 20Mb hard disk drive. On the compel of this deal, Zds became the world's largest laptop supplier in 1987 and 1988.
Zds partnered with Tottori Sanyo in the organize and manufacturing of these laptops. This connection is noted because it was the first deal between a major brand and an Asian Oem (Original tool Manufacturer). At the time, Compaq, Ibm, Toshiba, Nec, etc. All designed and artificial their own machines. However, after the success of the Zds contribution other relationships, like Compaq and Citizen, soon followed. At this time the quality of Japanese engineering and manufacturing in conjunction with the compel of the dollar relative to the yen (typically about 130 Yen = ) drove most brands to suppliers in Japan. clubs such as Sanyo, Tottori Sanyo, Citizen, and Casio were all heavily complicated in this firm as Oems. However, by the mid-1990s a weakening dollar and the rising viability of Taiwanese Oems such as Acer, Quanta, Compal, Twinhead, and Chicony lead the provide base to rapidly shift from Japan to Taiwan. Additionally, brands which were more nimble and relied less on internal engineering such as Gateway, Dell and Micron began to rise quickly to leadership positions. Combinations such as Dell/Compal and Gateway/Quanta ultimately became powerhouse partnerships and greatly contributed to the prominence of Taiwanese Oems as the town of Pc manufacturing from about 1995 onward.
Another noted computer was the Cambridge Z88, designed by Clive Sinclair, introduced in 1988. About the size of an A4 sheet of paper as well, it ran on accepted batteries, and contained basic spreadsheet, word processing, and communications programs. It unbelievable the time to come miniaturization of the conveyable computer; and, as a Rom-based engine with a small display, can -- like the Trs-80 Model 100 -- also be seen as a forerunner of the personal digital assistant.
By the end of the 1980s, laptop computers were becoming favorite among firm people. The Nec Ultralite, released in mid-1989, was possibly the first notebook computer, weighing just over 2 kg; in lieu of a floppy or hard drive, it contained a 2 megabyte Ram drive, but this reduced its utility as well as its size. The first notebook computers to consist of hard drives were those of the Compaq Lte series, introduced toward the end of that year. Truly the size of a notebook, they also featured backlit displays with Cga resolutions (though not Cga colors).
The Macintosh Portable, Apple's first exertion at a battery-powered computerThe first Apple Computer engine designed to be used on the go was the 1989 Macintosh conveyable (although an Lcd screen had been an option for the conveyable Apple Iic in 1984). As a matter of fact a "luggable", the Mac conveyable was praised for its clear active matrix display and long battery life, but was a poor jobber due to its bulk. In the absence of a true Apple laptop, some compatible machines such as the Outbound Laptop were ready for Mac users; however, for copyright reasons, the user had to provide a set of Mac Roms, which ordinarily meant having to buy a new or used Macintosh as well.
The Apple PowerBook series, introduced in October 1991, pioneered changes that are now de facto standards on laptops, such as the placement of the keyboard, room for palm rest, and the inclusion of a built-in pointing expedient (a trackball). The following year, Ibm released its Thinkpad 700C, featuring a similar organize (though with a distinctive red TrackPoint pointing device).
Later PowerBooks introduced the first 256-color displays (PowerBook 165c, 1993), and first true touchpad, first 16-bit sound recording, and first built-in Ethernet network adapter (PowerBook 500, 1994).
The summer of 1995 was a primary turning point in the history of notebook computing. In August of that year Microsoft introduced Windows 95. It was the first time that Microsoft had settled much of the power supervision control in the operating system. Prior to this point each brand used custom Bios, drivers and in some cases, Asics, to optimize the battery life of its machines. This move by Microsoft was controversial in the eyes of notebook designers because it greatly reduced their quality to innovate; however, it did serve its role in simplifying and stabilizing certain aspects of notebook design. Windows 95 also ushered in the point of the Cd-Rom in mobile computing and initiated the shift to the Intel Pentium processor as the base platform for notebooks. The Gateway Solo was the first notebook introduced with a Pentium processor and a Cd-Rom. By also featuring a removeable hard disk drive and floppy drive it was the first three-spindle (optical, floppy, and hard disk drive) notebook computer. The Gateway Solo was very victorious within the buyer segment of the market. In approximately the same time duration the Dell Latitude, Toshiba Satellite, and Ibm Thinkpad were reaching great success with Pentium-based two-spindle (hard disk and floppy disk drive) systems directed toward the corporate market.
An old (1997) Micron laptopAs technology improved during the 1990s, the usefulness and popularity of laptops increased. Correspondingly prices went down. some developments exact to laptops were quickly implemented, enhancing usability and performance. Among them were:
- Improved battery technology. The heavy lead-acid batteries were substituted with lighter and more effective technologies, first nickel cadmium or NiCd, then nickel metal hydride (NiMh) and then lithium ion battery and lithium polymer.
- Power-saving processors. While laptops in 1991 were puny to the 80286 processor because of the power demands of the more distinguished 80386, the introduction of the Intel 386Sl processor, designed for the exact power needs of laptops, marked the point at which laptop needs were included in Cpu design. The 386Sl integrated a 386Sx core with a memory controller and this was paired with an I/O chip to create the Sl chipset. It was more integrated than any former clarification although its cost was higher. It was heavily adopted by the major notebook brands of the time. Intel followed this with the 486Sl chipset which used the same architecture. However, Intel had to abandon this organize approach as it introduced its Pentium series. Early versions of the mobile Pentium required Tab mounting (also used in Lcd manufacturing) and this initially puny the estimate of clubs capable of supplying notebooks. However, Intel did ultimately migrate to more accepted chip packaging. One limitation of notebooks has all the time been the difficulty in upgrading the processor which is a base attribute of desktops. Intel did try to solve this qoute with the introduction of the Mmc for mobile computing. The Mmc was a accepted module upon which the Cpu and external cache memory could sit. It gave the notebook buyer the inherent to upgrade his Cpu at a later date, eased the manufacturing process some, and was also used in some cases to skirt U.S. Import duties as the Cpu could be added to the chassis after it arrived in the U.S. Intel stuck with Mmc for a few generations but ultimately could not enunciate the accepted speed and data integrity to the memory subsystem straight through the Mmc connector.
- Improved liquid crystal displays, in single active-matrix Tft (Thin-Flim Transitor) Lcd technology. Early laptop screens were black and white, blue and white, or grayscale, Stn (Super Twist Nematic) passive-matrix Lcds prone to heavy shadows, ghosting and blurry movement (some conveyable computer screens were sharper monochrome plasma displays, but these drew too much current to be powered by batteries). Color Stn screens were used for some time although their viewing quality was poor. By about 1991 , two new color Lcd techologies hit the mainstream market in a big way; Dual Stn and Tft. The Dual Stn screens solved many of the viewing problems of Stn at a very affordable price and the Tft screens offered exquisite viewing quality although initially at a steep price. Dstn continued to offer a primary cost benefit over Tft until the mid-90s before the cost delta dropped to the point that Dstn was no longer used in notebooks. Improvements in output technology meant displays became larger, sharper, had higher native resolutions, faster response time and could display color with great accuracy, making them an accepted substitute for a traditional Crt monitor.
- Improved hard disk technology. Early laptops and portables had only floppy disk drives. As thin, high-capacity hard disk drives with higher reliability and shock resistance and lower power consumption became available, users could store their work on laptop computers and take it with them. The 3.5" Hdd was created initially as a response to the needs of notebook designers that needed smaller, lower power consumption products. As pressure to continue to shrink the notebook size even further, the 2.5" Hdd was introduced.
- Improved connectivity. Internal modems and accepted serial, parallel, and Ps/2 ports on Ibm Pc-compatible laptops made it easier to work away from home; the addition of network adapters and, from 1997, Usb, as well as, from 1999, Wi-Fi, made laptops as easy to use with peripherals as a desktop computer.
The 0 laptop
A first generation prototype of the 0 laptop
In 2005, faculty members from the Mit Media Lab along with Nicholas Negroponte introduced the 0 laptop and the One Laptop Per Child project. The aim is to design, manufacture, and distribute laptops that are sufficiently inexpensive to provide every child in the world way to knowledge and modern forms of education. The laptops are to be sold to governments and issued to children by schools. These equipments, of which many prototypes have already been presented, will be rugged, Linux-based, and so power effective that a hand-cranking dynamo can alone provide adequate power for operation (although this hand-crank has since been removed). Ad-hoc wireless mesh networking may be used to allow many machines to share a single Internet connection.
parallel to usb cable